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Note 

Continuous Analog of Newton’s Method for the Calculation of 

Quasibound States of Hydrogen p-Molecules 

I 

In the present paper the continuous analog of Newton’s method (CAMEN 
scheme) [l, 21 is used for numerical solution of scattering problem in quantum 
mechanics taking account of closed channels. 

Such problems can be formulated as follows. Given the system of ordinary 
differential equations 

( d2 -- 
dx2 L’Lx; l) + 24 Xi(X) - f V,j(X) Xj(X) = 0, (1) 

j=l 

O<x< w, i = 1, 2,..., m 

in which the coefficients (potentials) V,(X) obey the asymptotic conditions 

with 
x2 VJx) ---f const when x -+ 0, 

At x = 0 the boundary conditions 

are considered. 

Xi(O) = 0, i = 1, 2,..., m (2) 

By the conventional terminology the equations following from system (1) in the 
limit x -+ w  are called the reaction channels. In the case V&w) > 2ME > 
V,,,,,(w) > 0 the wave functions xi(x) in the closed channels (m 2 i > 5’) when 
x -+ w  are exponentially decreasing: 

where 
x&4 - exp(-4, (3) 

Ki = (v,,(W) - 2ME)‘/2, 

and for the open channels (i < S) their asymptotic form is oscillating 

xp’ (x) - Af)sin(k,x - (L7r/2) + @(ki)), 
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where 

ki = (2ME - Vii(m))‘/2, 8t’ = 8,(kJ &, + 42 (1 - a,,). 

In the scattering problem the functional dependence of the scattering phases 
8:’ on energy E is usually investigated. Such an approach to the problem deter- 
mines the numerical methods of its solution which reduce to the integration of 
system (1) with some initial conditions and a given energy E (or consequences of 
this system, e.g., the equations for the phase and amplitude functions [3]) on a 
sufficiently large interval 0 < x < x, . 

In the proposed apprach the problem (l)-(4) given on the semiaxis 0 < x < cx) 
reduces to the Sturm-Liouville problem on the finite interval [0, x,] with the 
given values of phases 8:’ and boundary conditions which are the approximation 
of conditions (3), (4) at the point x, . The collision energy E and the wavefunctions 
x$“(x) corresponding to a set of phases 8:) are then found as the eigenvalue and 
eigenfunctions of the given problem. Such an approach to the scattering problem 
is especially effective in the resonance situations when the phase 82) = 6f’(ki) 
changes sharply with slightly changing E. 

3 

Here we consider the problem on the calculation of quasibound states of 
hydrogen p-molecules by which one can trace the possibilities of the proposed 
method and the peculiarities of its application. 

In the adiabatic representation of the three-body problem [4] the energy levels 
and wavefunctions of mesomolecules are obtained from system (1) at m = 2 with 
the effective mass of the three-body system 

kf=($+ l )(&++-)-l Ml + M2 
where m, , M1 and Mz are the masses of the p-meson and nuclei, respectively. The 
effective potentials Vii(x) are calculated when solving the two-center problem [5]. 
The method of their construction is given in the paper [6]. 

There are several definitions of quasibound states in quantum mecanics [7] with 
different ranges of applicability. Without going into details, we accept the following 
definition 

@(k,) = +I + +) (5) 
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which holds with good accuracy for the states with k, Q 1 and L # 0 [7, 111. The 
collision energy E is defined as a real part of the complex energy of the quasibound 
state 

EqSt = E - i(r/2), 

where n is the number of zeros of the wavefunction xl(x) in the range of potentials 
l’ij(X). All quasibound states of p-molecules with unequal nuclei (Ml # MZ) are 
in the range of values 

V,,(m) > 2A4E > V,,(oo) = 0. 

For determining the width of the levels r we use the relation [7] 

I- = w~)/J-oz” Xl264 dx. 

The function xl(x) is normalized by the condition (4) at A, = 1 and the x0 value is 
chosen as the position of the first zero xl(x) beyond the range of potentials Vij . 

A similar approach to the scattering problems for the radial Schrodinger equation 
was considered in [8,9]. 

4 

To solve the problem (l)-(l) for finding the quasistationary levels and wave- 
functions of p-molecules, one uses the CAMEN scheme thoroughly discussed in 
[2]. It is a generalization of the algorithm for solving the Sturm-Liouville problem 
given in [ 11. Note some details of the application of the calculation scheme charac- 
teristic of the considered case. 

To make the approximation of boundary conditions for system (1) on the interval 
0 < x < x, more accurate, the asymptotic form (3), (4) of the wavefunctions is 
defined in more detail and, taking account of (5), has the form: 

21(x) = (-1>n+l 
[( 

-1 + f djf-“j 
j=l 1 

COS(( - (Lr/2)) + f b&-‘j+l sin(.$ - (Lrr/2)) 
j=l 1 

(6) 
where 5 = k,x and 

g2(x) = exp{--2x} t six-j. 
j=O 

(7) 

Using the known asymptotic form of the potentials Vii(x) [l, 61 one can easily 
obtain the expressions for the coefficients aj , bj and dj in expansions (6), (7). The 
upper limits of the summation s, , s2 , 3 s in them depend on the values k, , x,,, , 
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and on necessary calculation accuracy. For the wavefunctions xi(x) at the point 
X l)E , we consider the boundary conditions of the type: 

ww + .a4 xl> xiwz=~m = 0, i= I,2 (8) 

wherefi(E, X) are the logarithmic derivatives constructed taking account of expan- 
sions (6), (7). 

The Eqs. (l), (2), (8) which are the approximation of the considered problem on 
the finite interval 0 < x < x, are supported by the normalization condition of 
the wavefunction x2(x) in the closed channel 

sz” x22(~) dx + c I” g22(E, x) dx = 1 (9) 
0 %I 

where c = x2(xm)/k2(E, x,). Then the CAMEN scheme can be completely applied 
for this problem. 

For the approximation of differential operators of system (l), boundary condi- 
tions (8), and the normalization condition (9) in the proposed algorithm we have 
used the three-point finite-difference approximation and quadrature formulas of 
second-order of accuracy with respect to step h of the uniform difference net. The 
calculation errors in dependence on the values of the parameters si (i = 1, 2, 3) in 
formulas (6), (7), X, and the step h of the difference net have been investigated. 

In accordance with general estimates [lo], the absolute accuracy of the calcula- 
tion of energy E and wavefunctions xi(x) is of the order O(h2) and is N 1O-4 when 
choosing S, = 3, s2 = 4, S, = 6, x,,, = 30, and h = 0.01 taking account of the 
terms ~x-~ in the asymptotic form of the potentials V&x). 

The initial approximation for the function x2(x) in the closed channel is chosen 
following [l], and for the function xl(x) in the open channel as a sinusoid with the 
deformation to fulfill conditions (2), (6), and the given number of zeroes n in the 
range of potentials l&(x). The calculation time of characteristics of the quasibound 
state at the computer CDC-6200 is about 2 min. 

5 

The calculation results for the hydrogen p-molecules are given in Table I. 
Figure 1 represents the wavefunctions x1(x) and x2(x) of the quasibound state of 
the mesolecule dtp with quantum numbers L = 3, n = 0. The energy and width 
of this level are equal to E = 4.6.10-3 and r = 5.4.10-4, respectively. 

In the proposed computationa scheme the eigenvalues and eigenfunctions are 
defined in the unique computation process and with the same absolute accuracy. 
The scheme is stable, and this is especially important for the problems with long- 
range potentials as well as when finding small eigenvalues. 
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TABLE I 

Energies and Widths of Quasibound States of Hydrogen Moleculesa 

L n E -WV) 

3 0 6.80 . IO” 37.2 

2 1 8.2 * 1O-4 4.5 

2 0 1.03 . 10-Z 55.6 

2 0 8.29 . 1O-3 44.9 

3 0 4.57. 10-a 25.1 

r QW 

1.45 * 10-Z 7.9 

1.9 . 10-4 1.1 

6.31 . 1O-3 35.0 

4.48 . 1O-S 24.0 

5.3 * lo-” 2.9 

“In the calculations the following masses of hydrogen isotopes are used: m,, = 206.769, 
M, = 1836,109, Md = 3670,398, Mt = 5496,753. 

FIG. 1. The wavefunctions of the quasistationary state of mesomolecule dtp (M = 10.89, 
L = 3, n = 0): &)-the solution in the open channel, and x&x) in the closed one. 

FIG. 2. The dependence of the energy E and width r of the quasistationary state L = 2, 
n = 1 on the effective mass A4 of the problem near the continuum (A = 2 ME). 
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From Fig. 2 we can see the evolution of the quasistationary level (L = 1, n = 1, 
E = 8, 2.10-4, I’ = 2.10-3 of the mesomolecule ttp with increasing effective mass 
of the system M which is equal to 13.54. It is seen that when A4 > 14.27 the quasi- 
stationary level becomes discrete and the dependence E = E(M) is approximately 
linear. This example shows the efficiency of the algorithm when calculating both 
the discrete and quasistationary levels in the vicinity of the continuum E = 0. 
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